您现在的位置是: 首页 > 考试题库 考试题库

趣味数学小知识

zmhk 2024-04-26 人已围观

简介趣味数学小知识       对于趣味数学小知识的话题,我可以从不同的角度进行分析和讨论,并提供相关的资讯和建议。1.数学小知识20字二年级2.五年级数学趣味小知识3.趣味小知识(数学趣味小知识简短的20到50字左右)数学小知识20字二年

趣味数学小知识

       对于趣味数学小知识的话题,我可以从不同的角度进行分析和讨论,并提供相关的资讯和建议。

1.数学小知识20字二年级

2.五年级数学趣味小知识

3.趣味小知识(数学趣味小知识简短的20到50字左右)

趣味数学小知识

数学小知识20字二年级

       1. 数学小知识20字

        数学小知识20字 1. 20个字的数学小知识

        人们把12345679叫做“缺8数”,这“缺8数”有许多让人惊讶的特点,比如用9的倍数与它相乘,乘积竟会是由同一个数组成,人们把这叫做“清一色”。比如:

        12345679*9=111111111

        12345679*18=222222222

       12345679*27=333333333

        ……

        12345679*81=999999999

        这些都是9的1倍至9的9倍的。

        还有99、108、117至171。最后,得出的答案是:

        12345679*99=1222222221

        12345679*108=1333333332

        12345679*117=1444444443

        … …

        12345679*171=2111111109

        也是“清一色

        2. 数学趣味小知识 简短的 20到50字左右

        趣味数学小知识

        数论部分:

        1、没有最大的质数。欧几里得给出了优美而简单的证明。

        2、哥德巴赫猜想:任何一个偶数都能表示成两个质数之和。陈景润的成果为:任何一个偶数都能表示成一个质数和不多于两个质数的乘积之和。

        3、费马大定理:x的n次方+y的n次方=z的n次方,n>2时没有整数解。欧拉证明了3和4,1995年被英国数学家 安德鲁*怀尔斯 证明。

        拓扑学部分:

        1、多面体点面棱的关系:定点数+面数=棱数+2,笛卡尔提出,欧拉证明,也称欧拉定理。

        2、欧拉定理推论:可能只有5种正多面体,正四面体,正八面体,正六面体,正二十面体,正十二面体。

        3、把空间翻过来,左手系的物体就能变成右手系的,通过克莱因瓶模拟,一节很好的头脑体操,

        摘自:/bbs2/ThreadDetailx?id=31900

        3. 数学课外小知识

        数学知识《几何原本》几 何原本《几何原本》是古希腊数学家欧几里得的一部不朽之作,是当时整个希腊数学成果、方法、思想和精神的结晶,其内容和形式对几何学本身和数学逻辑的发展有着巨大的影响.自它问世之日起,在长达二千多年的时间里一直盛行不衰.它历经多次翻译和修订,自1482年第一个印刷本出版后,至今已有一千多种不同的版本.除了《圣经》之外,没有任何其他著作,其研究、使用和传播之广泛,能够与《几何原本》相比.但《几何原本》超越民族、种族、宗教信仰、文化意识方面的影响,却是《圣经》所无法比拟的. 公元前7世纪之后,希腊几何学迅猛地发展,积累了丰富的材料.希腊学者们开始对当时的数学知识作有计划的整理,并试图将其组成一个严密的知识系统.首先做出这方面尝试的是公元前5世纪的希波克拉底(Hippocrates),其后经过了众多数学家的修改和补充.到了公元前4世纪时,希腊学者们已经为建构数学的理论大厦打下了坚实的基础.欧几里得在前人工作的基础之上,对希腊丰富的数学成果进行了收集、整理,用命题的形式重新表述,对一些结论作了严格的证明.他最大的贡献就是选择了一系列具有重大意义的、最原始的定义和公理,并将它们严格地按逻辑的顺序进行排列,然后在此基础上进行演绎和证明,形成了具有公理化结构的,具有严密逻辑体系的《几何原本》.《几何原本》的希腊原始抄本已经流失了,它的所有现代版本都是以希腊评注家泰奥恩(Theon,约比欧几里得晚七百年)编写的修订本为依据的.《几何原本》的泰奥恩修订本分13卷,总共有465个命题,其内容是阐述平面几何、立体几何及算术理论的系统化知识.第一卷首先给出了一些必要的基本定义、解释、公设和公理,还包括一些关于全等形、平行线和直线形的熟知的定理.该卷的最后两个命题是毕达哥拉斯定理及其逆定理.这里我们想到了关于英国哲学家T.霍布斯的一个小故事:有一天,霍布斯在偶然翻阅欧几里得的《几何原本》,看到毕达哥拉斯定理,感到十分惊讶,他说:“上帝啊!这是不可能的.”他由后向前仔细阅读第一章的每个命题的证明,直到公理和公设,他终于完全信服了. 第二卷篇幅不大,主要讨论毕达哥拉斯学派的几何代数学.第三卷包括圆、弦、割线、切线以及圆心角和圆周角的一些熟知的定理.这些定理大多都能在现在的中学数学课本中找到.第四卷则讨论了给定圆的某些内接和外切正多边形的尺规作图问题.第五卷对欧多克斯的比例理论作了精彩的解释,被认为是最重要的数学杰作之一.据说,捷克斯洛伐克的一位并不出名的数学家和牧师波尔查诺(Bolzano,1781-1848),在布拉格度假时,恰好生病,为了分散注意力,他拿起《几何原本》阅读了第五卷的内容.他说,这种高明的方法使他兴奋无比,以致于从病痛中完全解脱出来.此后,每当他朋友生病时,他总是把这作为一剂灵丹妙药问病人推荐.第七、八、九卷讨论的是初等数论,给出了求两个或多个整数的最大公因子的“欧几里得算法”,讨论了比例、几何级数,还给出了许多关于数论的重要定理.第十卷讨论无理量,即不可公度的线段,是很难读懂的一卷.最后三卷,即第十一、十二和十三卷,论述立体几何.目前中学几何课本中的内容,绝大多数都可以在《几何原本》中找到.《几何原本》按照公理化结构,运用了亚里士多德的逻辑方法,建立了第一个完整的关于几何学的演绎知识体系.所谓公理化结构就是:选取少量的原始概念和不需证明的命题,作为定义、公设和公理,使它们成为整个体系的出发点和逻辑依据,然后运用逻辑推理证明其他命题.《几何原本》成为了两千多年来运用公理化方法的一个绝好典范.诚然,正如一些现代数学家所指出的那样,《几何原本》存在着一些结构上的缺陷,但这丝毫无损于这部著作的崇高价值.它的影响之深远.使得“欧几里得”与“几何学”几乎成了同义语.它集中体现了希腊数学所奠定的数学思想、数学精神,是人类文化遗产中的一块瑰宝.哥德巴赫猜想 哥 德巴赫猜想 1742年德国人哥德巴赫给当时住在俄国彼得堡的大数学家欧拉写了一封信,在信中提出两个问题:第一,是否每个大于4的偶数都能表示为两个奇质数之和?如6=3+3,14=3+11等.第二,是否每个大于7的奇数都能表示3个奇质数之和?如9=3+3+3,15=3+5+7等.这就是著名的哥德巴赫猜想.它是数论中的一个著名问题,常被称为数学皇冠上的明珠. 实际上第一个问题的正确解法可以推出第二个问题的正确解法,因为每个大于 7的奇数显然可以表示为一个大于4的偶数与3的和.1937年,苏联数学家维诺格拉多夫利用他独创的“三角和”方法证明了每个充分大的奇数可以表示为3个奇质数之和,基本上解决了第二个问题.但是第一个问题至今仍未解决.由于问题实在太困难了,数学家们开始研究较弱的命题:每个充分大的偶数可以表示为质因数个数分别为m、n的两个自然数之和,简记为“m+n”.1920年挪威数学家布龙证明了“9+9”;以后的20几年里,数学家们又陆续证明了“7+7”,“6+6”,“5+5”,“4+4”,“1+c”,其中c是常数.1956年中国数学家王元证明了“3+4”,随后又证明了“3+3”,“2+3”。

        4. 收集20个数学小常识

        1。

        对顶角相等. 2。圆周率是一个无理数。

        3。三角形内角和为180度 4。

        多边形内角和为(边数-2)*180度 5。多边形外角和恒等于360度 6。

        一次函数的图象是一根直线。 7。

        正比例函数的图象是一根过原点的直线。 8。

        反比例函数的图象是双曲线。 9。

        两次函数的图象是抛物线。 10。

        同底数幂相乘,底数不变,指数相加。 11。

        两条平行线被第三条直线所截,同位角相等。 12。

        两条平行线被第三条直线所截,内错角相等。 13。

        两条平行线被第三条直线所截,同旁内角互补。 14。

        一个三角形的三条中线交于一点,这个点叫做重心。 15。

        一个三角形的三个角的角平分线交于一点,这个点叫做内心。 16。

        一个三角形三边上的三条高交于一点,这个点叫做垂心。 17。

        一个三角形三边的中垂线交于一点,这个点叫做外心。 18。

        同底等高的两个三角形面积相等。 19。

        1+2+3+……+n=(1+n)*n/2 20。 Sin90=1,Cos90=0,Sin0=0,Cos0=1。

        5. 关于数学的小知识

        杨辉三角是一个由数字排列成的三角形数表,一般形式如下: 1 1 1 1 2 1 1 3 3 1 1 4 6 4 1 1 5 10 10 5 1 1 6 15 20 15 6 1 1 7 21 35 35 21 7 1 … … … … … 杨辉三角最本质的特征是,它的两条斜边都是由数字1组成的,而其余的数则是等于它肩上的两个数之和。

        其实,中国古代数学家在数学的许多重要领域中处于遥遥领先的地位。中国古代数学史曾经有自己光辉灿烂的篇章,而杨辉三角的发现就是十分精彩的一页。

        杨辉,字谦光,北宋时期杭州人。在他1261年所著的《详解九章算法》一书中,辑录了如上所示的三角形数表,称之为“开方作法本源”图。

        而这样一个三角在我们的奥数竞赛中也是经常用到,最简单的就是叫你找规律。现在要求我们用编程的方法输出这样的数表。

        同时 这也是多项式(a+b)^n 打开括号后的各个项的二次项系数的规律 即为 0 (a+b)^0 (0 nCr 0) 1 (a+b)^1 (1 nCr 0) (1 nCr 1) 2 (a+b)^2 (2 nCr 0) (2 nCr 1) (2 nCr 2) 3 (a+b)^3 (3 nCr 0) (3 nCr 1) (3 nCr 2) (3 nCr 3) . 。 。

        。 。

        。 因此 杨辉三角第x层第y项直接就是 (y nCr x) 我们也不难得到 第x层的所有项的总和 为 2^x (即(a+b)^x中a,b都为1的时候) [ 上述y^x 指 y的 x次方;(a nCr b) 指 组合数] 其实,中国古代数学家在数学的许多重要领域中处于遥遥领先的地位。

        中国古代数学史曾经有自己光辉灿烂的篇章,而杨辉三角的发现就是十分精彩的一页。 杨辉,字谦光,北宋时期杭州人。

        在他1261年所著的《详解九章算法》一书中,辑录了如上所示的三角形数表,称之为“开方作法本源”图。 而这样一个三角在我们的奥数竞赛中也是经常用到,最简单的就是叫你找规律。

        具体的用法我们会在教学内容中讲授。 在国外,这也叫做"帕斯卡三角形"。

        6. 数学小知识

        这是一个有趣的数学常识,做数学报用上它也很不错。

        人们把12345679叫做“缺8数”,这“缺8数”有许多让人惊讶的特点,比如用9的倍数与它相乘,乘积竟会是由同一个数组成,人们把这叫做“清一色”。比如: 12345679*9=111111111 12345679*18=222222222 12345679*27=333333333 …… 12345679*81=999999999 这些都是9的1倍至9的9倍的。

        还有99、108、117至171。最后,得出的答案是: 12345679*99=1222222221 12345679*108=1333333332 12345679*117=1444444443 … … 12345679*171=2111111109 也是“清一色数学小常识(转载) [ 2007-11-28 12:58:00 | By: gnwz ] 数学小常识1.悖论: (1)罗素悖论 一天,萨维尔村理发师挂出了一块招牌:村里所有不自己理发的男人都由我给他们理发。

        于是有人问他:“您的头发谁给理呢?”理发师顿时哑口无言。 1874年,德国数学家康托尔创立了 *** 论,很快渗透到大部分数学分支,成为它们的基础。

        到十九世纪末,全部数学几乎都建立在 *** 论的基础上了。就在这时, *** 论接连出现了一系列自相矛盾的结果。

        特别是1902年罗素提出理发师故事反映的悖论,它极为简单、明确、通俗。于是,数学的基础被动摇了,这就是所谓的第三次“数学危机”。

        此后,为了克服这些悖论,数学家们做了大量研究工作,由此产生了大批新成果,也带来了数学观念的革命。 (2)说谎者悖论: “我正在说的这句话是慌话。”

        公元前四世纪的希腊数学家欧几里德提出的这个悖论,至今还在困扰着数学家和逻辑学家。这就是著名的说慌者悖论。

        类似的悖论最早是在公元前六世纪出现的,当时克里特岛哲学家爱皮梅尼特曾说过:“所有的克里特岛人都说慌。”在中国古代《墨经》中,也有一句十分相似的话:“以言为尽悖,悖,说在其言。”

        意思是:以为所有的话都是错的,这是错的,因为这本身就是一句话。 说慌者悖论有多种变化形式,例如,在同一张纸上写出下列两句话: 下一句话是慌话。

        上一句话是真话。 更有趣的是下面的对话。

        甲对乙说:“你下面要讲的是‘不’,对不对?请用‘是’或‘不’来回答!” 还有一个例子。有个虔诚的教徒,他在演说中口口声声说上帝是无所不能的,什么事都做得到。

        一位过路人问了一句话:“上帝能创造一块他自己也举不起来的石头吗?” 2. *** 数字 在生活中,我们经常会用到0、1、2、3、4、5、6、7、8、9这些数字。那么你知道这些数字是谁发明的吗? 这些数字符号原来是古代印度人发明的,后来传到 *** ,又从 *** 传到欧洲,欧洲人误以为是 *** 人发明的,就把它们叫做“ *** 数字”,因为流传了许多年,人们叫得顺口,所以至今人们仍然将错就错,把这些古代印度人发明的数字符号叫做 *** 数字。

        现在, *** 数字已成了全世界通用的数字符号。

五年级数学趣味小知识

       1. 生活中有哪些数学知识,请列举,字要多一点

        在我们生活的周围有很多的数学问题,这些数学问题贯穿于生活的方方面面,现实生活中,数学游戏有很多,比方说小朋友在打扑克时快算二十四、数学填框游戏,就连赵本山的小品中也有很多这样的数学游戏.如“树上七个猴,地上一个猴,一共几个猴.”等等生活中的例子.这些游戏构成了我们生活中五彩缤纷的画卷.我们每天早上一起来,首先是对一天的事情进行一下比较简单的计划,一天中要干哪些事情,需要什么时间完成,这一天的预算支出、收入各多少;有了一个初步的打算以后,开始对一天的工作进行实施;一天的工作进行中伴随着各种各样的计算、预算即数学.一天的工作结束后,接下来的是对这一天进行的小结,小结是通过一个一个的数学运算进行的,运算的结果是一个个比较直观的数字.我们现实生活中,购物、估算、计算时间、确定位置和买卖股票等等都与数学有关.可以说,数学在人们的生活中是无处不在的,数学是日常生活中必不可少的工具.无论人们从事什么职业,都不同程度地会用到数学的知识与技能以及数学的思考方法.特别是随着计算机的普及与发展,这种需要更是与日俱增.无论是我们日常生活中的天气预报、储蓄、市场调查与预测,还是基因图谱的分析、工程设计、信息编码、质量监测等等,都离不开数学的支持.而且,数学是和语言一样的一种工具,具有国际通用性.可以说,自然界中的数学不胜枚举,如蜜蜂营造的蜂房,它的表面就是由奇妙的数学图形——正六边形构成的,这种蜂房消耗最少的材料和时间;城市里的下水道盖都有是圆形的,你知道这是为什么吗?人行道上,常见到这样的图案,它们分别是同样大小的正方形或正六边形的地砖铺成的,这样形状的地砖能铺成平整无孔隙的地面.这里面竟有一个节约的数学道理在里面呢?再比如,100户人家要安装电话,事实上并不需要100条电话线路,只要允许有一些时间占线,就能大大节约安装成本,这正体现了数理统计的作用.因此,生活与数学是分不开的,生活中有数学,数学是生活的缩影.在一年要结束的时候,商人在谈论中说我这一年的收入是多少,与去年相比怎么样;农民也在谈论这一年中收入多少粮食;工人也在谈论在这一年的收入与支出是否相当,有多少存款;军人谈论这一年中训练成绩如何,提高了多少成绩;而学生的学习成绩则是对一位教师一年来辛苦工作的衡量标准;单位也在做这样那样的总结.一年的结束是这样的,下一年的开始同样也要有一个预算;一天、一个月、一个季度、一个阶段人们都在做同样的事情;一个人、一个家庭、一个单位、一个组织、一个国家等等,都在用数学的方法对他们在不同时间、地点、空间、人员、事务等等上做一定的运算后,得出一个直观的数字标示量,作为一个目标、结论、预算、程度等等.总之,生活中的数学可以说是无处不在,数学严重影响着我们的生活,是生活中的重要条件.因此,我们不可忽视生活中的数学,要重视它并最大限度地开发、利用它.。

        2. 生活中有哪些数学小常识啊

        这是一个有趣的数学常识,做数学报用上它也很不错。

        人们把12345679叫做“缺8数”,这“缺8数”有许多让人惊讶的特点,比如用9的倍数与它相乘,乘积竟会是由同一个数组成,人们把这叫做“清一色”。比如:

        12345679*9=111111111

       12345679*18=222222222

        12345679*27=333333333

        ……

        12345679*81=999999999

        这些都是9的1倍至9的9倍的。

        还有99、108、117至171。最后,得出的答案是:

        12345679*99=1222222221

        12345679*108=1333333332

        12345679*117=1444444443

        … …

        12345679*171=2111111109

        也是“清一色

        3. 生活中的数学学问

        学数学就是为了能在实际生活中应用,数学是人们用来解决实际问题的,其实数学问题就产生9生活中。

        比如说,上街买东西自然要用到加减法,修房造屋总要画图纸。类似这样的问题数不胜数,这些知识就从生活中产生,最后被人们归纳成数学知识,解决了更多的实际问题。

        我曾看见过这样的一个报道:一个教授问一群外国学生:“12点到1点之间,分针和时针会重合几次?”那些学生都从手腕上拿下手表,开始拨表针;而这位教授在给中国学生讲到同样一个问题时,学生们就会套用数学公式来计算。评论说,由此可见,中国学生的数学知识都是从书本上搬到脑子中,不能灵活运用,很少想到在实际生活中学习、掌握数学知识。

        从这以后,我开始有意识的把数学和日常生活联系起来。有一次,妈妈烙饼,锅里能放两张饼。

        我就想,这不是一个数学问题吗?烙一张饼用两分钟,烙正、反面各用一分钟,锅里最多同时放两张饼,那么烙三张饼最多用几分钟呢?我想了想,得出结论:要用3分钟:先把第一、第二张饼同时放进锅内,1分钟后,取出第二张饼,放入第三张饼,把第一张饼翻面;再烙1分钟,这样第一张饼就好了,取出来。然后放第二张饼的反面,同时把第三张饼翻过来,这样3分钟就全部搞定。

        我把这个想法告诉了妈妈,她说,实际上不会这么巧,总得有一些误差,不过算法是正确的。看来,我们必须学以致用,才能更好的让数学服务于我们的生活。

        数学就应该在生活中学习。有人说,现在书本上的知识都和实际联系不大。

        这说明他们的知识迁移能力还没有得到充分的锻炼。正因为学了不能够很好的理解、运用于日常生活中,才使得很多人对数学不重视。

        希望同学们到生活中学数学,在生活中用数学,数学与生活密不可分,学深了,学透了,自然会发现,其实数学很有用处。 生活中的数学 林飞 生活是数学的发源地,是数学的根,因此,数学都能在生活中找到其产生的踪迹。

        《数学课程标准》指出:“数学是人们生活、劳动和学习必不可少的工具。”既然数学来源于生活,那么我们的数学教学就不应该只是单纯的知识传授,而应遵循源于生活,寓于生活的理念,让学生体会到数学就在他们身边,感受到数学的趣味和作用。

        长期以来,为什么一些学生对数学不感兴趣,甚至对数学学习产生恐惧心理?其主要原因是:数学离学生的生活太远,故使学生感到数学枯燥、抽象难学。现在的新教材克服了这一弊端。

        它将数学与生活联系起来,题材丰富多采,呈现形式多样,并引导学生去探究一些数学问题。这一切正符合小学生好奇、好思、喜新的心理特点。

        根据新教材的要求,我在教学中竭力让数学贴近儿童的生活,注重满足儿童身心发展的需要。结合本人实践,谈几点认识。

        1、素材来源于生活 数学来源于生活,生活中处处有数学。教学时要善于挖掘生活中的数学素材,让数学贴近生活,使学生感受到数学的实用性,对数学产生亲切感。

        例如在教学《克和千克的认识》:一开始就从学生身边选择素材并制成录像片段作为课堂引入,这三段录像分别是学生称体重、农民卖菜和在水果摊买水果。使学生通过对熟悉的生活场景的回顾,感受到质量与我们生活的密切联系,消除对这一知识的距离感。

        此外,整堂课从教具到学具都取之于学生最熟悉的生活品,当学生看到自己喜欢吃的某一样食品或是非常熟悉的生活必须品出现在课堂上的时侯,那种油然而生的亲切感会使他们的情绪空前高涨,从而激发主动学习的愿望。在练习的环节中,我有意识的布置了一个课后实践题“做爸爸妈妈的小帮手”要求学生利用双休日跟爸爸妈妈到菜场或超市去了解一些物品的重量,并记录下来,从而将我们的数学小课堂和社会这个大课堂联系起来,使学生再一次感悟到数学和生活的联系,并在社会实践中进一不形成和巩固重量概念。

        2、注重生活经验 生活经验是儿童数学学习的重要资源。尊重和承认"生活经验是儿童数学学习的重要资源",可以有效地帮助教师改变自己的教学方式,从而促进学生学习方式的转变。

        如果对学生已有的生活经验不能正确地加以分析,也许就很难准确地把握住学生学习的"起点",教学很可能会回到"灌输"的老路上去。着力实施一种"基于儿童生活经验的数学教学",也正是数学课程改革的核心理念之一。

        4. 生活中的数学知识

        在生活中。比如说,上街买东西自然要用到加减法,修房造屋总要画图纸。类似这样的问题数不胜数,这些知识就从生活中产生,最后被人们归纳成数学知识,解决了更多的实际问题。

        我曾看见过这样的一个报道:一个教授问一群外国学生:“12点到1点之间,分针和时针会重合几次?”那些学生都从手腕上拿下手表,开始拨表针;而这位教授在给中国学生讲到同样一个问题时,学生们就会套用数学公式来计算。评论说,由此可见,中国学生的数学知识都是从书本上搬到脑子中,不能灵活运用,很少想到在实际生活中学习、掌握数学知识。

        从这以后,我开始有意识的把数学和日常生活联系起来。有一次,妈妈烙饼,锅里能放两张饼。我就想,这不是一个数学问题吗?烙一张饼用两分钟,烙正、反面各用一分钟,锅里最多同时放两张饼,那么烙三张饼最多用几分钟呢?我想了想,得出结论:要用3分钟:先把第一、第二张饼同时放进锅内,1分钟后,取出第二张饼,放入第三张饼,把第一张饼翻面;再烙1分钟,这样第一张饼就好了,取出来。然后放第二张饼的反面,同时把第三张饼翻过来,这样3分钟就全部搞定。

        我把这个想法告诉了妈妈,她说,实际上不会这么巧,总得有一些误差,不过算法是正确的。看来,我们必须学以致用,才能更好的让数学服务于我们的生活。

        数学就应该在生活中学习。有人说,现在书本上的知识都和实际联系不大。这说明他们的知识迁移能力还没有得到充分的锻炼。正因为学了不能够很好的理解、运用于日常生活中,才使得很多人对数学不重视。希望同学们到生活中学数学,在生活中用数学,数学与生活密不可分,学深了,学透了,自然会发现,其实数学很有用处。

        5. 生活中的数学小故事100字3篇要快,急

        一个星期天的上午,我和爸爸妈妈在家里看电视,电视上正在播放一场蓝球比赛。

        看了一会儿,爸爸突然对我说:“祺祺,我来考你一个数学问题,看看你会不会?”我张口就说:“好的,没问题。”爸爸想了一下,说到:“假设红队一分钟投8个球,蓝队一分钟投6个球,他们一起投了8分钟之后,蓝队提高命中率一分钟投10个球,红队由于体力不支减少投球只数一分钟投6个球,问多少分钟后红队和蓝队投进的只数相同?” 我想了一会儿没做出来,过了好长时间他还是没想出来。

        时间一分一秒的过去了,我实在想不出来,只得不好意思地说:“没了草稿本,我做不出来。”我知道,就算我有草稿本也未必做得出来。

        这个时候,妈妈对我说:“原来红队一分钟比蓝队多投进2个,一共投了8分钟,也就是8*2=16(个);后来蓝队反超每分钟比红队多投4个,那么16个球要投几分钟呢?16÷4=4(分钟),要4分钟才能追上。”我说:“原来这么简单!我怎么没想到呢?”爸爸笑着说“简单嘛?这说明你考虑的思路有问题。

        在现实生活中,我们要善于去发现事物,找出它们的规律,那你就会觉得生活中的数学比课堂上讲有意思多了。” 通过这件事,我发现生活中的数学确实是无处不在,生活中、学习中到处都有。

        从此,我就更加喜欢数学了! 评论(2)3148 其他回答(2) 热心问友 2009-08-04 动物数学 气象学家Lorenz提出一篇论文,名叫「一只蝴蝶拍一下翅膀会不会在Taxas州引起龙卷风?」论述某系统如果初期条件差一点点,结果会很不稳定,他把这种现象戏称做「蝴蝶效应」。就像我们投掷骰子两次,无论我们如何刻意去投掷,两次的物理现象和投出的点数也不一定是相同的。

        Lorenz为何要写这篇论文呢? 这故事发生在1961年的某个冬天,他如往常一般在办公室操作气象电脑。平时,他只需要将温度、湿度、压力等气象数据输入,电脑就会依据三个内建的微分方程式,计算出下一刻可能的气象数据,因此模拟出气象变化图。

        这一天,Lorenz想更进一步了解某段纪录的后续变化,他把某时刻的气象数据重新输入电脑,让电脑计算出更多的后续结果。当时,电脑处理数据资料的数度不快,在结果出来之前,足够他喝杯咖啡并和友人闲聊一阵。

        在一小时后,结果出来了,不过令他目瞪口呆。结果和原资讯两相比较,初期数据还差不多,越到后期,数据差异就越大了,就像是不同的两笔资讯。

        而问题并不出在电脑,问题是他输入的数据差了0.000127,而这些微的差异却造成天壤之别。所以长期的准确预测天气是不可能的。

       

参考资料:

阿草的葫芦(下册)——远哲科学教育基金会 2、动物中的数学“天才” 蜜蜂蜂房是严格的六角柱状体,它的一端是平整的六角形开口,另一端是封闭的六角菱锥形的底,由三个相同的菱形组成。组成底盘的菱形的钝角为109度28分,所有的锐角为70度32分,这样既坚固又省料。

        蜂房的巢壁厚0.073毫米,误差极小。 丹顶鹤总是成群结队迁飞,而且排成“人”字形。

        “人”字形的角度是110度。更精确地计算还表明“人”字形夹角的一半——即每边与鹤群前进方向的夹角为54度44分8秒!而金刚石结晶体的角度正好也是54度44分8秒!是巧合还是某种大自然的“默契”? 蜘蛛结的“八卦”形网,是既复杂又美丽的八角形几何图案,人们即使用直尺的圆规也很难画出像蜘蛛网那样匀称的图案。

        冬天,猫睡觉时总是把身体抱成一个球形,这其间也有数学,因为球形使身体的表面积最小,从而散发的热量也最少。 真正的数学“天才”是珊瑚虫。

        珊瑚虫在自己的身上记下“日历”,它们每年在自己的体壁上“刻画”出365条斑纹,显然是一天“画”一条。奇怪的是,古生物学家发现3亿5千万年前的珊瑚虫每年“画”出400幅“水彩画”。

        天文学家告诉我们,当时地球一天仅21.9小时,一年不是365天,而是400天。(生活时报) 评论(1)62 白云 8级 2009-08-04 1.问:用平底锅每次煎两个饼,每煎熟一个饼正反面各需1分钟,因此一只饼从入锅到煎熟共需要2分钟,照这样,煎三个饼到少要用多少分? 答:3分钟。

        第一分钟,先煎两个饼; 第二分钟,把一个饼翻过来,取出另一个饼,再放入一个新饼; 第三分钟,取出两面都煎好的一个饼,把另一个饼翻过来,再放入刚才已经煎了一面的饼。 2.问:某地的海水1000千克含盐3千克,1千克海水含盐多少千克?10千克的海水呢? 答:3÷1000=0.003千克 3.问:在日常生活中,我们经常要用一种交通工具——自行车,而自行车的车轮都作成圆形的,你知道为什么吗?能运用有关知识简单说一说车轴为什么要放在轮子的中心处? 答:为了使骑起来平稳 轴心到地面距离要不变,所以轮子是以轴心为圆心的圆,所以自行车的车轮都作成圆形的,车轴要放在轮子的中心处。

        评论(1)43 相关知识 有关数学的生活中的小故事 9 2012-06-29 要生活中的数学趣味小故事 4 2013-06-15 数学故事大全 10 2012-06-18 数学小故事(短的) 1 2014-07-06 求10个数学小故事 要短的 6 2013-08-10 更多生活中关于数学的事生活中关于数学的事生活中关于数学的事相关知识>> 相关搜索 生活中的数学小常识生活中的数学故事。

        6. 生活中的数学小知识:猫咪睡觉时为什么把

        生活中的数学小知识:猫咪睡觉时为什么把身体蜷成团? 一到冬天,一个个“猫饼”、“狗团子”就开始出现了。

        .就算室内很暖和,它们还是喜欢团成球。每次看到毛球们团成一个圈圈睡觉,都好想问它们这样头贴着 *** 的奇葩姿势到底舒服嘛!其实维持这个姿势睡觉并不舒服,可是为什么毛球们还喜欢这样呢?今天就和极客数学帮一起去看看生活中的数学科普吧。

        睡觉时,我们可以做个试验:先把身体蜷成一团,再将身体伸展开,相信你马上就能得出结论:第一个姿势比较暖和。猫咪睡觉时把身体蜷成团也是这个道理,因为这样能使身体暴露在冷空气中的面积大大缩小,散发的热量也最少,当然也就更暖和。

        如果猫咪也是数学家,它就会这样总结: 体积相同时,球体的表面积最小。 当然,猫咪并不懂得什么数学原理,它只是在漫长的时间里进化出了与环境最相宜的行为方式,这是大自然的智慧。

        大自然并不偏心,这种美妙的智慧同样也赐予了很多动物、植物。比如蜘蛛就在它的丝网上写下来好多秘密。

        蜘蛛网匀称、复杂、美丽,就算是木工师傅使用圆规和直尺也难以媲美,而当科学家用数学方程和坐标系来研究蜘蛛网时,他们惊呆了:平行线段、全等对应角、对数螺线、悬链线和超越线……这些复杂的数学概念,竟然都应用在了这小小的蜘蛛网上——不!与其说是蜘蛛应用了数学原理,倒不如说是人们从蜘蛛网的精妙感受到了大自然的智慧! 比蜘蛛还要小的珊瑚虫,其身体就是一本大自然的史书,它们每天在体壁上记下一条环纹,一年就是365条,遇到闰年就是366条,精确无比。生物学家通过研究发现,e68a843231313335323631343130323136353331333366303739在3.5亿年前,珊瑚虫的身体上每年有400条环纹,这说明当时地球上的一昼夜只有21.9小时,一年有400天。

        如果不是这些珊瑚虫,人类又怎能重现几亿年前地球的模样呢? 而我们熟知的黄金分割0.618,也并不是专属于《蒙娜丽莎》和《维纳斯》的——确切地说,是艺术家向大自然学习,才创造出了美的作品。仔细观察一片枫叶,你会发现,它的叶脉长度和叶子宽度的比例,近似0.618。

        蝴蝶身长和翅宽的比例,鹦鹉螺壳上相邻螺旋的直径比例,也都接近0.618。 就连我们最喜欢画的图案——五角星,其美感也是从数学而来的。

        我们可以找一张正五角星的,拿尺子量一量,算一算。你将会得出一个惊人的结论:五角星上的每一条线段都符合点黄金分割。

        而在自然界中,海星、杨桃、茑萝等也都是完美的五角星形。 生活中不缺乏数学,仔细观察,热爱数学,你也是数学家哦。

        7. 关于数学的小知识

        负数的发现 人们在生活中经常会遇到各种相反意义的量。

        比如,在记帐时有余有亏;在计算粮仓存米时,有时要记进粮食,有时要记出粮食。为了方便,人们就考虑了相反意义的数来表示。

        于是人们引入了正负数这个概念,把余钱进粮食记为正,把亏钱、出粮食记为负。可见正负数是生产实践中产生的。

        据史料记载,早在两千多年前,我国就有了正负数的概念,掌握了正负数的运算法则。人们计算的时候用一些小竹棍摆出各种数字来进行计算。

        这些小竹棍叫做“算筹"算筹也可以用骨头和象牙来制作。 我国三国时期的学者刘徽在建立负数的概念上有重大贡献。

        刘徽首先给出了正负数的定义,他说:“今两算得失相反,要令正负以名之。"意思是说,在计算过程中遇到具有相反意义的量,要用正数和负数来区分它们。

        刘徽第一次给出了正负区分正负数的方法。他说:“正算赤,负算黑;否则以邪正为异"意思是说,用红色的小棍摆出的数表示正数,用黑色的小棍摆出的数表示负数;也可以用斜摆的小棍表示负数,用正摆的小棍表示正数。

        我国古代著名的数学专著《九章算术》(成书于公元一世纪)中,最早提出了正负数加减法的法则:“正负数曰:同名相除,异名相益,正无入负之,负无入正之;其异名相除,同名相益,正无入正之,负无入负之。"这里的“名"就是“号",“除"就是“减",“相益"、“相除"就是两数的绝对值“相加"、“相减",“无"就是“零"。

        用现在的话说就是:“正负数的加减法则是:同符号两数相减,等于其绝对值相减,异号两数相减,等于其绝对值相加。零减正数得负数,零减负数得正数。

        异号两数相加,等于其绝对值相减,同号两数相加,等于其绝对值相加。零加正数等于正数,零加负数等于负数。

        " 这段关于正负数的运算法则的叙述是完全正确的,与现在的法则完全一致!负数的引入是我国数学家杰出的贡献之一。 用不同颜色的数表示正负数的习惯,一直保留到现在。

        现在一般用红色表示负数,报纸上登载某国经济上出现赤字,表明支出大于收入,财政上亏了钱。 负数是正数的相反数。

        在实际生活中,我们经常用正数和负数来表示意义相反的两个量。夏天武汉气温高达42°C,你会想到武汉的确象火炉,冬天哈尔滨气温-32°C一个负号让你感到北方冬天的寒冷。

        在现今的中小学教材中,负数的引入,是通过算术运算的方法引入的:只需以一个较小的数减去一个较大的数,便可以得到一个负数。这种引入方法可以在某种特殊的问题情景中给出负数的直观理解。

        而在古代数学中,负数常常是在代数方程的求解过程中产生的。对古代巴比伦的代数研究发现,巴比伦人在解方程中没有提出负数根的概念,即不用或未能发现负数根的概念。

        3世纪的希腊学者丢番图的著作中,也只给出了方程的正根。然而,在中国的传统数学中,已较早形成负数和相关的运算法则。

        除《九章算术》定义有关正负运算方法外,东汉末年刘烘(公元206年)、宋代扬辉(1261年)也论及了正负数加减法则,都与九章算术所说的完全一致。特别值得一提的是,元代朱世杰除了明确给出了正负数同号异号的加减法则外,还给出了关于正负数的乘除法则。

        负数在国外得到认识和被承认,较之中国要晚得多。在印度,数学家婆罗摩笈多于公元628年才认识负数可以是二次方程的根。

        而在欧洲14世纪最有成就的法国数学家丘凯把负数说成是荒谬的数。直到十七世纪荷兰人日拉尔(1629年)才首先认识和使用负数解决几何问题。

        与中国古代数学家不同,西方数学家更多的是研究负数存在的合理性。16、17世纪欧洲大多数数学家不承认负数是数。

        帕斯卡认为从0减去4是纯粹的胡说。帕斯卡的朋友阿润德提出一个有趣的说法来反对负数,他说(-1):1=1:(-1),那么较小的数与较大的数的比怎么能等于较大的数与较小的数比呢?直到1712年,连莱布尼兹也承认这种说法合理。

        英国数学家瓦里承认负数,同时认为负数小于零而大于无穷大(1655年)。他对此解释到:因为a>0时,英国著名代数学家德·摩根 在1831年仍认为负数是虚构的。

        他用以下的例子说明这一点:“父亲56岁,其子29岁。问何时父亲年龄将是儿子的二倍?"他列方程56+x=2(29+x),并解得x=-2。

        他称此解是荒唐的。当然,欧洲18世纪排斥负数的人已经不多了。

        随着19世纪整数理论基础的建立,负数在逻辑上的合理性才真正建立。

趣味小知识(数学趣味小知识简短的20到50字左右)

       1. 五年级数学生活小知识(5年级的数学小知识)

        五年级数学生活小知识(5年级的数学小知识) 1.5年级的数学小知识

        O”的自述 人人都轻视我,认为我可有可无、有时读数不读我,有时计算中一笔把我划掉。

        可你们知道吗?我也有许多实实在在的意义。 1.我表示“没有”。

        在数物体时,如果没有任何物体可数,就要用我来表示。 2.我有占数位的作用。

       记数时,如果数的某一数位上一个单位也没有,就用我来占位。比如:1080中百位、个位上一个单位也没有就用:0来占位。

        3.我表示起点。直尺、秤的起点都是用我来表示的。

        4.我表示界限。温度计上,我的上边叫“零上”,我的下边叫“零下”。

        5.我可以表示不同的精确度。在近似计算中,小数部分末尾的我可不能随便划去。

        如:7.00、7.0、7的精确度是不同的。 6.我不能做除数。

        让我做除数可就麻烦了,因为我做除数是没有意义的。 以后你们还会学到我的很多特殊性质、小朋友,请你不要看不起我。

        为什么电子计算机要用二进位制 由于人的双手有十个手指,人类发明了十进位制记数法。然而,十进位制和电子计算机却没有天然的联系,所以在计算机的理论和应用中难以畅通无阻。

        究竟为什么十进位制和计算机没有天然的联系?和计算机联系最自然的记数方法又是什么呢? 这要从计算机的工作原理说起。计算机的运行要靠电流,对于一个电路节点而言,电流通过的状态只有两个:通电和断电。

        计算机信息存储常用硬磁盘和软磁盘,对于磁盘上的每一个记录点而言,也只有两个状态:磁化和未磁化。近年来用光盘记录信息的做法也越来越普遍,光盘上海一个信息点的物理状态有两个:凹和凸,分别起着聚光和散光的作用。

        由此可见,计算机所使用的各种介质所能表现的都是两种状态,如果要记录十进位制的一位数,至少要有四个记录点(可有十六个信息状态),但此时又有六个信息状态闲置,这势必造成资源和资金的大量浪费。因此,十进位制不适合于作为计算机工作的数字进位制。

        那么该用什么样的进位制呢?人们从十进位制的发明中得到启示:既然每种介质都是具有两个状态的,最自然的进位制当然是二进位制。 二进位制所需要的记数的基本符号只要两个,即0和1。

        可以用1表示通电,0表示断电;或1表示磁化,0表示未磁化;或1表示凹点,0表示凸点。总之,二进位制的一个数位正好对应计算机介质的一个信息记录点。

        用计算机科学的语言,二进位制的一个数位称为一个比特(bit),8个比特称为一个字节(byte)。 二进位制在计算机内部使用是再自然不过的。

        但在人机交流上,二进位制有致命的弱点——数字的书写特别冗长。例如,十进位制的100000写成二进位制成为11000011010100000。

        为了解决这个问题,在计算机的理论和应用中还使用两种辅助的进位制——八进位制和十六进位制。二进位制的三个数位正好记为八进位制的一个数位,这样,数字长度就只有二进位制的三分之一,与十进位制记的数长度相差不多。

        例如,十进位制的100000写成八进位制就是303240。十六进位制的一个数位可以代表二进位制的四个数位,这样,一个字节正好是十六进位制的两个数位。

        十六进位制要求使用十六个不同的符号,除了0—9十个符号外,常用A、B、C、D、E、F六个符号分别代表(十进位制的)10、11、12、13、14、15。这样,十进位制的100000写成十六进位制就是186A0。

        二进位制和八进位制、二进位制和十六进位制之间的换算都十分简便,而采用八进位制和十六进位制又避免了数字冗长带来的不便,所以八进位制、十六进位制已成为人机交流中常用的记数法。为什么时间和角度的单位用六十进位制 时间的单位是小时,角度的单位是度,从表面上看,它们完全没有关系。

        可是,为什么它们都分成分、秒等名称相同的小单位呢?为什么又都用六十进位制呢? 我们仔细研究一下,就知道这两种量是紧密联系着的。原来,古代人由于生产劳动的需要,要研究天文和历法,就牵涉到时间和角度了。

        譬如研究昼夜的变化,就要观察地球的自转,这里自转的角度和时间是紧密地联系在一起的。因为历法需要的精确度较高,时间的单位“小时”、角度的单位“度”都嫌太大,必须进一步研究它们的小数。

        时间和角度都要求它们的小数单位具有这样的性质:使1/2、1/3、1/4、1/5、1/6等都能成为它的整数倍。以1/60作为单位,就正好具有这个性质。

        譬如:1/2等于30个1/60,1/3等于20个1/60,1/4等于15个1/60…… 数学上习惯把这个1/60的单位叫做“分”,用符号“′”来表示;把1分的1/60的单位叫做“秒”,用符号“〃”来表示。时间和角度都用分、秒作小数单位。

        这个小数的进位制在表示有些数字时很方便。例如常遇到的1/3,在十进位制里要变成无限小数,但在这种进位制中就是一个整数。

        这种六十进位制(严格地说是六十退位制)的小数记数法,在天文历法方面已长久地为全世界的科学家们所习惯,所以也就一直沿用到今天。长度单位的自述 一天,长度单位的弟兄们到一起开会,主持会议的是“公里”老大哥,它首先发了言:“我们长度等单位是个国际大家庭,今天来参加会的是我们大家庭中的少数派,人们对我们非常生疏,因此,我们先作一下自我介绍。”

        首先从会场中央站起来一个说道:“我叫‘引’,是中。

        2.小学五年级数学知识点

        小学五年级数学上册期末复习知识点归纳 第一单元小数乘法 1、小数乘整数(P2、3):意义——求几个相同加数的和的简便运算。

        如:1.5*3表示1.5的3倍是多少或3个1.5的和的简便运算。 计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

        2、小数乘小数(P4、5):意义——就是求这个数的几分之几是多少。 如:1.5*0.8就是求1.5的十分之八是多少。

        1.5*1.8就是求1.5的1.8倍是多少。 计算方法:先把小数扩大成整数;按整数乘法的法则算出积;再看因数中一共有几位小数,就从积的右边起数出几位点上小数点。

        注意:计算结果中,小数部分末尾的0要去掉,把小数化简;小数部分位数不够时,要用0占位。 3、规律(1)(P9):一个数(0除外)乘大于1的数,积比原来的数大; 一个数(0除外)乘小于1的数,积比原来的数小。

        4、求近似数的方法一般有三种:(P10) ⑴四舍五入法;⑵进一法;⑶去尾法 5、计算钱数,保留两位小数,表示计算到分。保留一位小数,表示计算到角。

        6、(P11)小数四则运算顺序跟整数是一样的。 7、运算定律和性质: 加法:加法交换律:a+b=b+a 加法结合律:(a+b)+c=a+(b+c) 减法:减法性质:a-b-c=a-(b+c) a-(b-c)=a-b+c 乘法:乘法交换律:a*b=b*a乘法结合律:(a*b)*c=a*(b*c)乘法分配律:(a+b)*c=a*c+b*c(a-b)*c=a*c-b*c 除法:除法性质:a÷b÷c=a÷(b*c) 第二单元小数除法 8、小数除法的意义:已知两个因数的积与其中的一个因数,求另一个因数的运算。

        如:0.6÷0.3表示已知两个因数的积0.6与其中的一个因数0.3,求另一个因数的运算。 9、小数除以整数的计算方法(P16):小数除以整数,按整数除法的方法去除。

        商的小数点要和被除数的小数点对齐。整数部分不够除,商0,点上小数点。

        如果有余数,要添0再除。 10、(P21)除数是小数的除法的计算方法:先将除数和被除数扩大相同的倍数,使除数变成整数,再按“除数是整数的小数除法”的法则进行计算。

        注意:如果被除数的位数不够,在被除数的末尾用0补足。 11、(P23)在实际应用中,小数除法所得的商也可以根据需要用“四舍五入”法保留一定的小数位数,求出商的近似数。

        12、(P24、25)除法中的变化规律:①商不变性质:被除数和除数同时扩大或缩小相同的倍数(0除外),商不变。 ②除数不变,被除数扩大,商随着扩大。

        ③被除数不变,除数缩小,商扩大。 13、(P28)循环小数:一个数的小数部分,从某一位起,一个数字或者几个数字依次不断重复出现,这样的小数叫做循环小数。

        循环节:一个循环小数的小数部分,依次不断重复出现的数字。如6.3232……的循环节是32. 14、小数部分的位数是有限的小数,叫做有限小数。

        小数部分的位数是无限的小数,叫做无限小数。 第三单元观察物体 15、从不同的角度观察物体,看到的形状可能是不同的;观察长方体或正方体时,从固定位置最多能看到三个面。

        第四单元简易方程 16、(P45)在含有字母的式子里,字母中间的乘号可以记作“?”,也可以省略不写。 加号、减号除号以及数与数之间的乘号不能省略。

        17、a*a可以写作a?a或a ,a 读作a的平方。 2a表示a+a 18、方程:含有未知数的等式称为方程。

        使方程左右两边相等的未知数的值,叫做方程的解。 求方程的解的过程叫做解方程。

        19、解方程原理:天平平衡。 等式左右两边同时加、减、乘、除相同的数(0除外),等式依然成立。

        20、10个数量关系式:加法:和=加数+加数 一个加数=和-两一个加数 减法:差=被减数-减数 被减数=差+减数 减数=被减数-差 乘法:积=因数*因数 一个因数=积÷另一个因数 除法:商=被除数÷除数 被除数=商*除数 除数=被除数÷商 21、所有的方程都是等式,但等式不一定都是等式。 22、方程的检验过程:方程左边=…… 23、方程的解是一个数; =…… 解方程式一个计算过程。

        =方程右边 所以,X=…是方程的解。 第五单元多边形的面积 23、公式:长方形:周长=(长+宽)*2——长=周长÷2-宽;宽=周长÷2-长 字母公式:C=(a+b)*2 面积=长*宽 字母公式:S=ab 正方形:周长=边长*4 字母公式:C=4a 面积=边长*边长 字母公式:S=a 平行四边形的面积=底*高 字母公式: S=ah 三角形的面积=底*高÷2 ——底=面积*2÷高;高=面积*2÷底 字母公式: S=ah÷2 梯形的面积=(上底+下底)*高÷2 字母公式: S=(a+b)h÷2 ——上底=面积*2÷高-下底,下底=面积*2÷高-上底;高=面积*2÷(上底+下底) 24、平行四边形面积公式推导:剪拼、平移 25、三角形面积公式推导:旋转 平行四边形可以转化成一个长方形; 两个完全一样的三角形可以拼成一个平行四边形, 长方形的长相当于平行四边形的底; 平行四边形的底相当于三角形的底; 长方形的宽相当于平行四边形的高; 平行四边形的高相当于三角形的高; 长方形的面积等于平行四边形的面积, 平行四边形的面积等于三角形面积的2倍, 因为长方形面积=长*宽,所以平行四边形面积=底*高。

        因为平行四边形面积=底*高,所以三角形面积=底*高÷2 26、梯形面积公式推导:旋。

        3.小学数学五年级的知识点有哪些

        五年级第一学期数学概念综合1、0既不是正数,也不是负数。

        正数都大于0,负数都小于0。通常情况下正、负数表示两种相反关系的量,如果盈利用正数表示,那么亏损就用负数,如果高于海平面用正数表示,那么低于海平面用负数表示。

        水沸腾的温度是100℃,水结冰的温度是0℃。2、在数不规则图形的面积时不满一格的看作半格。

        先数满格,再数半格。3、长方形的周长=(长+宽)*2 长方形的面积=长*宽 正方形的周长=边长*4 正方形的面积=边长*边长4、沿着平行四边形的任意一条高剪开,然后通过移动拼成一个长方形。

        长方形的长等于平行四边形的底,长方形的宽等于平行四边形的高。因为长方形的面积=长*宽,所以平行四边形的面积=底*高,用字母表示S=a*h。

        5、将两个完全一样的三角形拼成一个平行四边形,这个平行四边形的底等于三角形的底,平行四边形的高等于三角形的高,拼成的平行四边形的面积是每个三角形面积的2倍,每个三角形的面积是拼成的平行四边形面积的一半。因为平行四边形的面积等于底*高,所以三角形的面积等于底*高÷2。

        用字母表示S=a*h÷2。 等底等高的两个三角形的面积相等。

        6、在平行四边形里画一个最大的三角形,这个三角形的面积等于这个平行四边形面积的一半。用细木条钉成一个长方形框架,如果把他拉成一个平行四边形,则它的周长不变,面积变小了,因为底不变,高变小了;如果将平行四边形框架拉成一个长方形,则他们的周长不变,面积变大了。

        7、将两个完全一样的梯形拼成一个平行四边形,这个平行四边形的底等于梯形的上底与下底的和,平行四边形的高等于梯形的高,拼成的平行四边形的面积是每个梯形面积的2倍,每个梯形的面积是拼成的平行四边形面积的一半。因为平行四边形的面积=底*高,所以梯形的面积=(上底+下底)*高÷2字母表示S=(a+b)*h÷2.8、分母是10、100、1000……的分数都可以用小数表示。

        分母是10的分数写成一位小数,表示十分之几。分母是100的分数写成两位小数,表示百分之几。

        分母是1000的分数写成三位小数,表示千分之几。小数点左边第一位是个位,计数单位个(1) 小数点左边第二位是十位,计数单位十(10) 小数点右边第一位是十分位,计数单位十分之一(0.1) 小数点右边第二位是百分位,计数单位百分之一(0.01) 小数点右边第三位是千分位,计数单位千分之一(0.001) 小数部分最高位是十分位,最大的计数单位是十分之一。

        相邻两个计数单位之间的进率是10。9、1里面有(10)个0.1(十分之一) ,0.1(十分之一)里面有10个0.01(百分之一)0.01(百分之一)里面有10个0.001(千分之一),1里面有100个0.01。

        10、小数的性质:在小数的末尾添上“0”或去掉“0”,小数的大小不变。11、用“万”作单位:1、在万位后面点上小数点;2、添个“万”字。

        用“=”号。用“亿”作单位:1、在亿位后面点上小数点;2、添个“亿”字。

        用“=”号。注意:改写不能改变原数的大小。

        省略万后面的尾数:要看“千”位,用四舍五入法取近似值。用“≈”号。

        省略亿后面的尾数:要看“千万”位,用四舍五入法取近似值。用“≈”号。

        保留整数,就是精确到个位,要看小数部分第一位(十分位)。保留一位小数,就是精确到十分位,要看小数部分第二位(百分位)。

        保留两位小数,就是精确到百分位,要看小数部分第三位(千分位)。注意:在表示近似值时末尾的“0”一定不能去掉。

        例如,一个小数保留两位小数是1、50,末尾的“0”不能去掉。虽然1、50与1.5大小相等,但表示的精确程度不一样,1.50表示精确到百分位,而1.5表示精确到十分位,所以1.50在表示近似数时末尾的“0”一定不能去掉。

        12、计算小数加减法时,要把小数点对齐,也就是相同数位对齐。13、找规律:1、找到周期;2、将个数÷周期;3、余数是几就是第几个。

        4、要算每个项目一共有几个,可以分三步去做:(1)每几个为一组;(2)每组中有几个;再乘一共有组数(3)最后加上余数中的个数就等于一共有多少个。14、解决问题中的策略:用一一列举法将可能的情况用列表法全部列举出来,列举时的技巧是先考虑数字较大的(放在第一行)。

        15、在计算小数乘法时(1)算:按照整数乘法的法则进行计算;(2)看:两个因数中一共有几位小数(3)数:就从积的末尾起数出几位;(4)点:点上小数点;(5)去:去掉小数末尾的0。16、一个小数乘10、100、1000……只要把小数点向右移动一位、两位、三位…… 一个小数除以10、100、1000……只要把小数点向左移动一位、两位、三位……17、1平方千米就是边长1000米的正方形的面积,等于1000000平方米。

        1公顷就是边长100米的正方形的面积,等于10000平方米。 1平方千米=100公顷。

        1公顷=100公亩=10000平方米18、整数加、减、乘、除法的运算定律对于小数也同样适用。加法交换律:a+b=b+a 加法结合律:(a+b)+c= a +(b+c) 乘法交换律:a*b=b*a 加法结合律:(a*b)*c= a *(b*c) 减法的性质:a―b―c = a―(b+c) 除法的性质:a÷b÷c = a÷(b*c)19、除数是小数的除法,首先看除数一共有几位小数,然后就根。

        4.五条生活中的数学知识

        在人们的日常生活中,数学无处不在,正确运用数学知识可以使生活得到改善。

        数学虽然是我们人类的大功臣,可如果我们人类不会使用它,它仍然"无利于世",所以,我们一定要用聪明的大脑,利用数学,使我们的生活更方便. 神奇的数学其实就在我们身边,让我们一起从身边的每一件小事做起,你一定会发现这神奇的数学无时无刻都在影响着我们,帮助着我们. 数学知识和数学思想在工农业生产和人们日常生活中有极其广泛的应用。譬如,人们购物后须记账,以便年终统计查询;去银行办理储蓄业务;查收各住户水电费用等,这些便利用了算术及统计学知识。

        此外,社区和机关大院门口的“推拉式自动伸缩门”;运动场跑道直道与弯道的平滑连接;底部不能靠近的建筑物高度的计算;隧道双向作业起点的确定;折扇的设计以及黄金分割等,则是平面几何中直线图形的性质及解Rt三角形有关知识的应用。 数学在社会学中的应用也非常广泛,在统计学中更是如此。

        它甚至可以用来避免疫病流行或减轻它们的影响力。当我们无法对全部人口采取免疫措施时,数学可以帮助我们确定哪些人必须注射疫苗以减少风险。

        在艺术领域,数学仍然无处不在。音乐、绘画、雕塑……所有门类的艺术都通过这样或那样的方式得到数学的帮助。

        日本雕塑家潮惠三喜欢用几何和拓扑学来创造自己的作品,通过数学计算分割雕塑用的花岗岩。潮惠三说:“数学是宇宙语言。”

        “数学是我们这个时代看不见的文化”,它在众多领域不同程度地影响着我们的生活方式和工作方式。当然,普通人和科学家是从不同的角度和不同的层面认识数学,普通人一般只了解数学与生活某一方面的联系,而体会不到它与生活各个方面的关联。

        人们总是认为数学比较抽象,对实际工作没有直接的帮助,没有必要去深入地学习和研究数学。其实不然,数学与其它科学一样,与我们的生活息息相关。

        著名的数学家华罗庚先生曾经说过:“宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,日用之繁,无处不用数学。”这是睿智的科学家对数学与生活关系的精彩描述。

        当代数学已经远不止是算术和几何,而是一门丰富多彩的学科,是计算和演绎的创造性的结合,扎根于数据而展现于抽象形式中,通过揭示现象中隐蔽的模式来帮助人们了解和认识周围的世界。它所处理的是科学中的数据、测量和观察的资料,是推断、演绎和证明,是自然现象、人类行为和社会系统的数学模型,是数、机会、形状、算法和变化。

        下面举个例子,让大家体会一下数学在实际生活中的运用。 例:在第二次世界大战期间,军事上、生产上、交通运输上都面临一系列的难题:飞机应当怎样侦察潜水艇的活动,有限的兵力应当怎样部署,生产应当怎样组织得更合理等等。

        在二战中期,希特勒统治的纳粹德国非常猖獗,潜艇活动频繁。根据一些数学家的建议,一个用飞机进行系统巡逻的计划被采纳了。

        按照这个计划,可以用尽可能少量的飞机来控制一定范围的水域。在这个计划实施以后,德国潜艇被侦察到的可能性大大增加。

        1943年2月,美国军方获悉一支日本舰队集结在南太平洋的新不列颠岛,打算越过俾斯麦海开往新几内亚。美国西南太平洋空军奉命拦截,并炸沉这支日本舰队。

        从新不列颠岛到新几内亚的航线有南北两条,航程都是三天。美军得到的气象预报表明,未来三天在北路航线上阴雨连绵,而南路天气比较好。

        在这种情况下,日本舰队将走北路呢,还是南路?这是美军必须进行分析和判断的。因为要完成轰炸任务,首先要派出少量飞机进行侦察搜索,要求尽快地发现日本舰队,然后出动大批飞机进行轰炸。

        空军司令考虑了出动少数飞机分两路进行搜索的战略,共有以下几种: 第一,搜索重点放在北路,日舰也走北路。这时虽然天气很差,能见度很低,但是因为搜索力量集中,可望在一天内发现日舰,于是就有两天的轰炸时间。

        第二,索重点放在北路,可是日舰走的是南路。这时南路虽然天气比较好,但是因为搜索力量集中于北路,南路只有很少的飞机,因此也需要花上一天的时间才能发现日舰。

        于是轰炸的时间也就只有两天。 第三,搜索重点放在南路,日舰却走北路。

        这时北路只有为数极少的飞机,天气又很坏,得花上两天时间才能发现日舰,轰炸时间只剩下一天。 第四,搜索重点放在南路,日舰也走南路。

        这时搜索的飞机比较多,天气又好,可以指望很快就能发现日舰,轰炸时间基本上有三天 站在美国人的立场,当然是第四种情况最有利。可是,打仗不能“一厢情愿”。

        站在日本人的立场,当然走北路要有利得多。所以第二种和第四种情形可能出现的机会很小。

        因此,空军司令毅然决定,把搜索重点放在北路。结果不出所料,日本人果然选择了这条航线,海战基本上就在美方预期的地点发生了,结果日方遭到了惨败。

        有人说:数学是科学的皇后。我认为,数学的地位与哲学非常相似。

        古往今来,历代哲学家都很重视数学,伟大的哲学家柏拉图曾在自己家的门口写下了一句话:“不懂数学者免进”。由此可见数学在哲学家心中的位置有多么重要。

        数学与哲学一样,既来源于生活又为生活服务,表面看似抽象,。

        5.五年级数学所有知识点

        五年级数学第十册期末考试试卷 成绩: 一 、填空:20% 1. 2. 5小时=( )小时( )分 5060平方分米=( )平方米 2. 24的约数有( ),把24分解质因数是( ) 3. 分数单位是 1/8的最大真分数是( ),最小假分数是( )。

        4. 一个最简分数的分子是最小的质数,分母是合数,这个分数最大是( ),如果再加上( )个这样的分数单位,就得到1。 5. 把一个长、宽、高分别是5分米,3分米、2分米的长方体截成两个小长方体,这两个小长方体表面积之和最大是( )平方分米。

        6. 用一根52厘米长的铁丝,恰好可以焊成一个长方体框架。框架长6厘米、宽4厘米、高( )厘米。

        7. A=2*3*5,B=3*5*5,A和B的最大公约数是( ),最小公倍数是( )。 8. 正方体的棱长扩大3倍,它的表面积扩大( )倍,它的体积扩大( )倍。

        9. 4/9与5/11比较,( )的分数单位大,( )的分数值大。 10. 两个数的最大公约数是8,最小公倍数是48,其中一个数16,另一个数是( )。

        二 、选择题(将正确答案的序号填在括号内):20% 1. 下面式子中,是整除的式子是( ) ① 4÷8=0.5 ② 39÷3=13 ③ 5. 2÷2. 6=2 2. 在2/3、3/20和7/28中,能化成有限小数的分数有( ) ① 3个 ② 2个 ③ 1个 3. 两个质数相乘的积一定是( ) ① 奇数 ② 偶数 ③ 合数 4 . A=5B(A 、B都是非零的自然数)下列说法不正确的是( ) ① A 和B的最大公约数是A ② A 和B的最小公倍数是A ③ A能被B整除,A含有约数5 5. 在100克的水中加入10克盐,这时盐占盐水的( ) ① 1/9 ② 1/10 ③ 1/11 6. 已知a>b,那么2/a与2/b比较( ) ① 2/a> 2/b ②2/a。

       1.数学趣味小知识 简短的 20到50字左右

        趣味数学小知识

        数论部分:

        1、没有最大的质数。欧几里得给出了优美而简单的证明。

        2、哥德巴赫猜想:任何一个偶数都能表示成两个质数之和。陈景润的成果为:任何一个偶数都能表示成一个质数和不多于两个质数的乘积之和。

       3、费马大定理:x的n次方+y的n次方=z的n次方,n>2时没有整数解。欧拉证明了3和4,1995年被英国数学家

        安德鲁*怀尔斯

        证明。

        拓扑学部分:

        1、多面体点面棱的关系:定点数+面数=棱数+2,笛卡尔提出,欧拉证明,也称欧拉定理。

        2、欧拉定理推论:可能只有5种正多面体,正四面体,正八面体,正六面体,正二十面体,正十二面体。

        3、把空间翻过来,左手系的物体就能变成右手系的,通过克莱因瓶模拟,一节很好的头脑体操,

        摘自:/bbs2/ThreadDetailx?id=31900

        2.趣味小知识

        物理趣味小知识》——会变化的“物重”在学习了有关物理知识以后,同学们可能知道物体自身的重量不是一成不变的,即有时候“失重”;有时候“超重”。

        究竟是什么原因导致物体重量的变化呢?别急,我们先来看下面一个故事:从前,曾经有这样一件事:一个商人向荷兰渔民购入5000吨青鱼,装在船上,从荷兰一个城市运到靠近赤道的非洲城市——马加的海港去。到了那里,一过磅,发现青鱼少了将近19吨。

        奇怪!到哪里去了呢?被偷走是不可能的,因为轮船沿途并没有靠过岸。在当时大家都无法揭开这个秘密,现在我们终于知道它的原因了:原来这是地球引力跟我们开的玩笑。

        由于地球是稍带椭圆的,它的南北极的半径要比赤道半径小20公里。半径越小,吸引力越大;反之亦然。

        因此,在荷兰的五千吨青鱼,运到靠近赤道时,青鱼的重量就自然变“轻”了。除此之外,物体重量的变化情况还很多呢!如在高山上,要比平地上轻一些;在赤道上比两极轻一些;在水里比在陆地上轻的多,等等。

        可以想象,如果飞到地球引力达不到的高空区域,在那里根本没有重量了,因为在那里地球的吸引力很小。但是,不论怎样变化,物体的质量却不会变化!怎么样,现在大家明白其中的道理了吧!其实我们身边还有很多类似的问题,只要大家能够及时发现它们,并且与理论相结合,就可以找出正确的答案。

        相信你今后遇到类似的问题时,不要“束手无策”哦!猫的趣味小知识猫有230根骨头。猫的听觉比人和狗灵敏。

        相对身体尺寸而言,猫有比任何哺乳动物都有大的眼睛。猫正常的脉搏每分钟大约在110至170次之间。

        猫正常的身体温度大约是39度 。猫的垂直跳跃高度能达到自己身体高度的5倍。

        猫的鼻纹是唯一的,没有任何两只猫的鼻纹是一样的。猫寻女人的反应高于男人,原因是女人声音的频率比男人更高。

        家猫的奔跑速度每小时大约是55至60公里。猫是最爱睡的哺乳动物,一天中大约有16个小时在睡觉。

        鸟类趣味小知识什么鸟不易被人察觉? 当你在森林里经过一棵停有山鹬的树时,可能会察觉不到树上有山鹬,山鹬并不是一只很小的鸟,而是一种大鸟,可是它那一身漂亮的羽毛,看起来就像秋天的落叶一般,加上它静止不动的假装,才使人不易察觉。山鹬站在树上,随时注意四周的情况,即使是它背后的一点动静,它也能立刻察觉的到。

        这是因这它的眼睛位于头顶偏后的地方,所以任何敌人都不能逃过它的视线。当然,很少有昆虫能幸免被它猎食。

        松鸡住在哪里? 松鸡住在南北半球的冷原地带,是寒带地区少数鸟类中的一种。 冬天时,鸟栖息在松树或杉树上。

        为了抵御寒冷的气候,它必须要吃大量的针叶才能产生能量。在极地附近,冬季时昼短夜长,所以松鸡几乎要花整个白昼的时间来进食。

        春天来临时,松鸡就纷纷展开求偶的行动。它们通常是由雌鸟来选择雄鸟,必须在比武招亲获胜,才能得到雌鸟的亲睐。

        鹦鹉之间会不会聊天?"宝宝起床!"有些鹦鹉会说话,但它们并不会真正交谈。鹦鹉的主人很有耐心的教它们说些很简单的字句,虽然它们能够照念,可是却一点不懂其中的意思。

        动物能用它们自己的方式互相交谈,而不是用我们所懂的字句。它们的叫声可能代表:"我害怕";"请摸我一下";"我找到食物了"或者是"危险哦!快逃!"颜色、动作和气味也能作为动物之间沟通的工具。

        猎人可以模仿它们的叫声、气味等设置陷井,让它们自投罗网。 企鹅不会筑巢? 事实上企鹅不会筑巢。

        企鹅妈妈到海中找食物的时候,企鹅爸爸则在陆地上,把蛋放在双脚间,再用充满脂肪的大肚子盖在上面,站着孵蛋。企鹅每年都在相同的地点孵蛋,它们用喙和振翅,来对付可能进犯的敌人,保护它们的后代。

        初出世的小企鹅会到爸爸妈妈的嘴里找食物。 企鹅是以鱼.虾和贝壳为食物的。

        在食物丰富的夏季,它们把时间全部花在补充营养上,通常可以潜到几百米深的海中去寻找食物。 企鹅会不会飞 企鹅是一种很奇特的动物,不灵活却很可爱。

        它们的双脚就像穿进同一只裤管里,走起路来扭扭捏捏,十分困难。企鹅为了保持平衡,所以老上张着萎缩的翅膀。

        虽然它们不会飞,不过它们还是属于鸟类。它们厚重的衣上面长满了十分紧密的小羽毛,小羽毛中充满了油脂。

        企鹅在水中鼓动着翅膀前进,好像装上发动机似有非常敏捷。企鹅性情活泼,十分喜欢潜水和在水中玩耍。

        它们在逃避天敌时,常常露出水面,可以在空中滑翔1米多。 哪一种鸟巢最漂亮? 在天空中飞翔的鸟,种类很多,每一种鸟所筑的巢都不一样。

        蜂鸟的巢比汤匙还小,有些老鹰的巢比汽车还大。鸟类用绒毛、小树枝、唾液或蜘蛛的网作为筑巢的原料。

        鸟巢的形状,有的像碗,有的像球;有些像摇篮一样悬吊着,有些则像木筏一样地漂浮在水面上百非洲有一种织布鸟,它的巢筑的很复杂。有的鸟还会在巢上涂颜色,来吸引雌鸟的注意。

        世上还有许多种的鸟巢,至于哪一种最漂亮还是你自己挑选吧! 鸟类如何进行长途飞行? 鸟儿在长途旅行时,都是成群结队的,一连飞行好几天。例如燕鸥,就是这样飞完从北极到南极,约2万千米的路程。

        鸟类的长途飞行其实是很艰苦的。在飞行。

        3.数学小故事10篇(最简短的)

        一元钱哪里去了

        三人住旅店,每人每天的价格是十元,每人付了十元钱,总共给了老板三十元,后来老板优惠了五元,让服务员退给他们,结果服务员贪污了两元,剩下三元每人退了一元钱,也就是说每人消费了9元钱。三个人总共花了27元,加上服务员贪污的2元总共29元。那一元钱到哪去了?

        分苹果

        小咪家里来了5位同学。小咪的爸爸想用苹果来招待这6位小朋友,可是家里只有5个苹果。怎么办呢?只好把苹果切开了,可是又不能切成碎块,小咪的爸爸希望每个苹果最多切成3块。这就成了又一道题目:给6个孩子平均分配5个苹果,每个苹果都不许切成3块以上。

        小咪的爸爸是怎样做的呢?

        小马虎数鸡

        春节里,养鸡专业户小马虎站在院子里,数了一遍鸡的总数,决定留下 ,1/2外,把1/4慰问 *** ,1/3送给养老院。他把鸡送走后,听到房内有鸡叫,才知道少数了10只鸡。于是把房内房外的鸡重数一遍,没有错,不多不少,正是留下1/2的数。小马虎奇怪了。问题出在哪里呢?你知道小马虎在院里数的鸡是多少只吗? 『本文由第一范文网整理,版权归原作者、原出处所有。』

        来了多少客人一天,小林正在家里洗碗,小强看见了问道:“怎么洗那么多的碗 ?”“

        家里来了客人了。”“来了多少人?”小林说:“我没有数,只知道他们每人用一个饭碗,,二人合用一个汤碗,三人合用一个菜碗,四人合用一个大酒碗,一共用了15个碗。”你知道来了多少客人吗?

        4.中国国旗趣味小知识有哪些

        旗面为红色,象征着革命。左上方缀着五颗**五角星;一星较大,居左;四星较小,环拱于大星之右,并各有一个尖角正对大星的中心点

        《中华人民共和国国旗法》的附注:

        国旗制法说明,其中第三条:

        (三)国旗之通用尺度定为如下五种,各界酌情选用:

        甲、长288公分,高192公分。

        乙、长240公分,高160公分。

        丙、长192公分,高128公分。

        丁、长144公分,高96公分。

        戊、长96公分,高64公分。

        国旗制作方法全文:

        国旗制法说明

        (1949年9月28日中国人民政治协商会议第一届全体会议主席团公布)

        国旗的形状、颜色两面相同,旗上五星两面相对。为便利计,本件仅以旗杆在左之一面为说明之标准。对于旗杆在右之一面,凡本件所称左均应改右,所称右均应改左。

        (一)旗面为红色,长方形,其长与高为三与二之比,旗面左上方缀**五角星五颗。一星较大,其外接圆直径为旗高十分之三,居左;四星较小,其外接圆直径为旗高十分之一,环拱于大星之右。旗杆套为白色。

        (二)五星之位置与画法如下:

        甲、为便于确定五星之位置,先将旗面对分为四个相等的长方形,将左上方之长方形上下划为十等分,左右划为十五等分。

        乙、大五角星的中心点,在该长方形上五下五、左五右十之处。其画法为:以此点为圆心,以三等分为半径作一圆。在此圆周上,定出五个等距离的点,其一点须位于圆之正上方。然后将此五点中各相隔的两点相联,使各成一直线。此五直线所构成之外轮廓线,即为所需之大五角星。五角星之一个角尖正向上方。

        丙、四颗小五角星的中心点,第一点在该长方形上二下八、左十右五之处,第二点在上四下六、左十二右三之处,第三点在上七下三、左十二右三之处,第四点在上九下一、左十右五之处。其画法为:以以上四点为圆心,各以一等分为半径,分别作四个圆。在每个圆上各定出五个等距离的点,其中均须各有一点位于大五角星中心点与以上四个圆心的各联结线上。然后用构成大五角星的同样方法,构成小五角星。此四颗小五角星均各有一个角尖正对大五角星的中心点。

        (三)国旗之通用尺度定为如下五种,各界酌情选用:

        甲、长288公分,高192公分。

        乙、长240公分,高160公分。

        丙、长192公分,高128公分。

        丁、长144公分,高96公分。

        戊、长96公分,高64公分。

        2:

        国旗制法说明

        (1949年9月28日中国人民政治协商会议第一届全体会议主席团公布)

        国旗的形状、颜色两面相同,旗上五星两面相对。为便利计,本件仅以旗杆在左之一面为说明之标准。对于旗杆在右之一面,凡本件所称左均应改右,所称右均应改左。

        (一)旗面为红色,长方形,其长与高为三与二之比,旗面左上方缀**五角星五颗。一星较大,其外接圆直径为旗高十分之三,居左;四星较小,其外接圆直径为旗高十分之一,环拱于大星之右。旗杆套为白色。

        (二)五星之位置与画法如下:

        甲、为便于确定五星之位置,先将旗面对分为四个相等的长方形,将左上方之长方形上下划为十等分,左右划为十五等分。

        乙、大五角星的中心点,在该长方形上五下五、左五右十之处。其画法为:以此点为圆心,以三等分为半径作一圆。在此圆周上,定出五个等距离的点,其一点须位于圆之正上方。然后将此五点中各相隔的两点相联,使各成一直线。此五直线所构成之外轮廓线,即为所需之大五角星。五角星之一个角尖正向上方。

        丙、四颗小五角星的中心点,第一点在该长方形上二下八、左十右五之处,第二点在上四下六、左十二右三之处,第三点在上七下三、左十二右三之处,第四点在上九下一、左十右五之处。其画法为:以以上四点为圆心,各以一等分为半径,分别作四个圆。在每个圆上各定出五个等距离的点,其中均须各有一点位于大五角星中心点与以上四个圆心的各联结线上。然后用构成大五角星的同样方法,构成小五角星。此四颗小五角星均各有一个角尖正对大五角星的中心点。

        5.数学趣味小知识 简短的 20到50字左右

        趣味数学小知识数论部分:1、没有最大的质数。

        欧几里得给出了优美而简单的证明。2、哥德巴赫猜想:任何一个偶数都能表示成两个质数之和。

        陈景润的成果为:任何一个偶数都能表示成一个质数和不多于两个质数的乘积之和。3、费马大定理:x的n次方+y的n次方=z的n次方,n>2时没有整数解。

        欧拉证明了3和4,1995年被英国数学家安德鲁*怀尔斯证明。拓扑学部分:1、多面体点面棱的关系:定点数+面数=棱数+2,笛卡尔提出,欧拉证明,也称欧拉定理。

        2、欧拉定理推论:可能只有5种正多面体,正四面体,正八面体,正六面体,正二十面体,正十二面体。3、把空间翻过来,左手系的物体就能变成右手系的,通过克莱因瓶模拟,一节很好的头脑体操,摘自:/bbs2/ThreadDetailx?id=31900。

        6.关于珍惜时间的趣味小知识

        珍惜时间1

        陆机在《短歌行》曰:“人寿几何?逝如朝霞。时无重至,华不在阳。”人生短短几个秋,说起来也是弹指一挥间。无论你干什么事情你都要珍惜时间,切不可慨叹人生的苦短,让时间白白的从你身边流逝。

        庄子曰:“人生天地之间,若白驹之过隙,忽然而已。”第一种人正是认为短短的人生,若不及时行乐,岂不枉来人生一遭?他们抱着“今朝有酒今朝醉,我歌我笑如梦中”的态度,把时间都在嬉戏中度过,像寄生虫一般。而第二种人深深懂得“盛年不在来,一日难再晨”,于是痛感“时不待我”,整天埋头于工作和学习中,使生命的分分秒秒都在充实,都在发光发热,这也正体现了爱迪生的一句话:“人生太短,要干的事情太多,我要争分夺秒”。

        当然时间也会公正的给这两种以不同的结果:第一种,终日碌碌无为,落得两手空空,只留下无穷的悔恨;第二种,艰辛的劳作换来的是累累硕果,他们用自己的勤劳和智慧,为国家作出巨大的贡献,社会肯定另外他们的人生价值,他们也回以此自豪。

        至此,谁又能说时间不是一笔巨大的财富呢?珍惜时间会让你做时间的主人;珍惜时间会让你的人生变得绚丽多彩

        朱自清曾经在他的《匆匆》一文中说过:“洗手的时候,日子从水盆里过去;吃饭的时候,日子从饭碗里过去。当你觉察它去的匆匆了伸出手遮挡时,它又从遮挡的手指间过去。天黑时,你躺在床上,它便伶伶俐俐地从你身上跨过,从你脚边飞走了。”

        鲁迅先生也曾经说过:“节约时间,也就是使一个人的生命更加有效,也就等于延长了人的生命。”

        珍惜时间 2

        “明日复明日,明日何其多,我生待明日,万事成蹉跎!世人若被明日累,春去秋来老将至,朝看水东流,暮看日西坠,百年明日能几何?”

        这首>讲述着一个期待明天,而让今日闲过的故事,听寒号鸟微弱的叫声,大严冬中响起:“寒风冻死我,明日就垒窝”。

        秋风萧瑟,严冬即将来临,寒号鸟冻坏了,于是它说:“寒风冻死我,明日就垒窝”。天亮了,看看暖暖的阳光,还是先享受吧,明天再开始垒窝吧,又到了晚上

        “寒风冻死我,明日就垒窝”。寒号鸟又开始叫了,但是第二天它看到太阳公公在微笑,又不动了。。日子一天天的流逝了,寒号鸟始终没有履行自己的诺言,仍旧扑打着翅膀在寒风中念叨着“寒风冻死我,明日就垒窝”。很快冬天来了,寒号鸟已被冻得奄奄一息了,但嘴里还在微弱地喊着“寒……风……冻……死我,明日……”。

        是啊!时间是最公正的裁判,不管你是富有的还是贫穷的,都会公平的分配给你大好的时光,一年三百六十五天,一天二十四小时,八万六千四百秒,不多不少,就看你如何合理安排了,也许有人会在一天里创造出一项伟大的发明或是研究探讨出一种新的元素,也许有人会在一天里碌碌无为、虚度时光。那怎样才能做到珍惜时间呢?那就要勤勉了,不让一天闲过,每时每刻做些有用的事,戒掉一些不必要的行动,这样你才会成为时间的主人,时间也才会对你微笑。

        让我们不要在幻想明天或感叹昨天了,我们最应该珍惜的应该是“今”,一个现实的世界。正如文嘉先生所说:“今日复今日,今日何其少,今日又不为,此事何时了?人生百年几今日,今日不为真可惜!若言姑待明日至,明朝又有明朝事,为君聊赋今日诗,努力请从今日始”。

        我们是祖国的花朵更应该携手共进,珍惜时间,让我们珍惜时间,做时间的主人吧!

        珍惜时间3

        时间就是生命,鲁迅先生说:“浪费自己的时间等于慢性自杀,浪费别人的时间等于谋财害命。”这就说明了珍惜时间的重要性。

        时间对于学者来讲:“一寸光阴一寸金,寸金难买寸光阴。”学者只有珍惜时间才能创造自己的价值,为人类的文明发展,开拓新的知识天地。科技才能进一步发展,为祖国腾飞奉献自己的才华。反之,不珍惜时间,碌碌无为的过日子,明日复明日,不但毁了自己的前程,还给国家带来经济上的损失。

        时间对于军事学家来讲,珍惜时间就是胜利。红军要飞渡金沙江,夜以继日地行军,其目的就是争取时间,夺取胜利。可见珍惜时间是多么重要,这关系着祖国的生死存亡。

        时间对于经济学者就是金钱,就是效率。随着改革开放的大潮,时间越来越被人们重视,往日工作散怠,做一天和尚撞一天钟,吃大锅饭的现象越来越少,呈现在眼前的是抓紧时间创造效益,创造财富。

        珍惜时间就是珍惜生命,生命对于每个人都很重要,我们每个人都应好好地珍惜时间,创造自己的生命价值。

       好了,今天关于“趣味数学小知识”的话题就讲到这里了。希望大家能够通过我的讲解对“趣味数学小知识”有更全面、深入的了解,并且能够在今后的学习中更好地运用所学知识。